主管:国家卫生健康委员会
主办:国家卫生健康委医院管理研究所
中国科技核心期刊(中国科技论文统计源期刊)
中国科学引文数据库(CSCD)核心库期刊
《中文核心期刊要目总览》核心期刊

中国护理管理 ›› 2025, Vol. 25 ›› Issue (12): 1838-1843.doi: 10.3969/j.issn.1672-1756.2025.12.016

• 改善护理服务行动专题 • 上一篇    下一篇

ICU脓毒症患者液体清除时机预测模型的构建与验证

李宇轩 乔浡 李晨 路潜   

  1. 北京大学第三医院危重医学科,100191 北京市(李宇轩,乔浡);护理部(李晨);北京大学护理学院(路潜)
  • 出版日期:2025-12-15 发布日期:2025-12-15
  • 通讯作者: 路潜,博士,教授,E-mail:luqian@bjmu.edu.cn E-mail:E-mail:liyuxuan17@sina.com
  • 作者简介:李宇轩,硕士,副主任护师,科护士长,E-mail:liyuxuan17@sina.com

Development and validation of a predictive model for optimal timing of fluid removal in ICU patients with sepsis

LI Yuxuan, QIAO Bo, LI Chen, LU Qian   

  1. ICU, Peking University Third Hospital, Beijing, 100191, China
  • Online:2025-12-15 Published:2025-12-15
  • Contact: E-mail:luqian@bjmu.edu.cn E-mail:E-mail:liyuxuan17@sina.com

摘要: 目的:构建脓毒症患者液体清除时机预测模型,为临床识别液体清除时机提供参考。方法:回顾性选取北京市某三级甲等医院2019年1月至2023年12月的532例ICU脓毒症患者的17 186个观察窗形成训练集,筛选后纳入36个预测变量,采用4种机器学习算法构建预测模型,得出ICU脓毒症患者液体清除时机的最优预测模型。在2024年1月—12月前瞻性选取79例脓毒症患者集的2 534个观察窗进行外部验证。结果:随机森林模型ROC曲线下面积(AUC)为0.797,Brier评分为0.202,综合表现最优,其在外部验证集中的AUC值为0.786,Brier评分为0.213。重要性排序前10位的变量依次为当日平衡量、当日出量、24 h尿量、4 h尿量、中心静脉压、24 h平衡量、累计平衡量、血清肌酐水平、N末端脑钠肽水平、累计出量。结论:基于随机森林算法构建的ICU脓毒症患者液体清除时机预测模型效能最佳,可为医护人员识别患者液体清除时机提供指导。

关键词: 重症监护室;脓毒症;液体清除;机器学习;预测模型

Abstract: Objective: To develop a predictive model for the timing of fluid removal in sepsis patients, aiming to provide a reference for clinical identification of the optimal fluid removal time. Methods: We retrospectively selected 17,186 observation windows of 532 ICU sepsis patients in a tertiary grade A hospital in Beijing from January 2019 to December 2023 to form the training set. Thirty-six predictor variables were included after screening. Four machine learning algorithms were employed to construct predictive models, and the optimal model for predicting fluid removal timing in ICU sepsis patients was identified. External validation of the model was conducted on a prospectively collected dataset of 2534 observation windows of 79 sepsis patients from January to December 2024. Results: The Random Forest model demonstrated the best overall performance, with an Area Under the Receiver Operating Characteristic Curve (AUC) of 0.797 and a Brier score of 0.202. Meanwhile, in the external validation set, it achieved an AUC of 0.786 and a Brier score of 0.213. The top 10 variables ranked by importance: daily net balance, daily output, 24-hour urine output, 4-hour urine output, central venous pressure, 24-hour net balance, cumulative net balance, serum creatinine level, N-terminal pro-brain natriuretic peptide, and cumulative output. Conclusion: The Random Forest-based predictive model exhibits the best performance and can guide healthcare professionals in identifying the optimal timing for fluid removal.

Key words: ICU; sepsis; fluid removal; machine learning; predictive model

中图分类号:  R47;R197