主管:国家卫生健康委员会
主办:国家卫生健康委医院管理研究所
中国科技核心期刊(中国科技论文统计源期刊)
中国科学引文数据库(CSCD)核心库期刊
《中文核心期刊要目总览》核心期刊

中国护理管理 ›› 2026, Vol. 26 ›› Issue (1): 18-22.doi: 10.3969/j.issn.1672-1756.2026.01.005

• 特别策划·人工智能护理应用 • 上一篇    下一篇

多模态人工智能驱动的虚拟标准化病人系统的构建与应用

石小荣 董朋鑫 卢舒雨 陈湘 梁榕 林雪 陶品月 潘晓 任志玲 黄惠桥   

  1. 广西医科大学第二附属医院骨关节骨病外科,530007 南宁市(石小荣);护理部(董朋鑫,卢舒雨,陈湘,梁榕,林雪,黄惠桥);麻醉科(陶品月);耳鼻咽喉头颈外科(潘晓);胸心血管外科(任志玲)
  • 出版日期:2026-01-15 发布日期:2026-01-15
  • 通讯作者: 黄惠桥,硕士,主任护师,党委副书记,E-mail:hhq@sr.gxmu.edu.cn
  • 作者简介:石小荣,本科,副主任护师
  • 基金资助:
    2023年度广西高等教育本科教学改革工程项目(2023JGZ114);2024年广西学位与研究生教育改革课题(JGY2024095);2024年度广西医科大学本科教育教学改革项目(2024XJGY55)

Construction and application of multi-modal Artificial Intelligence Standardized Patient system

SHI Xiaorong, DONG Pengxin, LU Shuyu, CHEN Xiang, LIANG Rong, LIN Xue, TAO Pinyue, PAN Xiao, REN Zhiling, HUANG Huiqiao   

  1. Department of Orthopedic and Joint Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
  • Online:2026-01-15 Published:2026-01-15
  • Contact: E-mail:hhq@sr.gxmu.edu.cn

摘要: 目的:构建并应用多模态人工智能驱动的虚拟标准化病人(Artificial Intelligence Standardized Patient,AISP)系统,为护理教育智能化改革提供参考。方法:基于护理程序理论与建构主义学习理论,通过融合自然语言处理、语音识别、计算机视觉与大语言模型等技术,开发多模态AISP系统。便利选取2025年1月—12月在广西某三级甲等医院实习的118名护理本科生为研究对象,验证多模态AISP系统在提升学生问诊能力、病历书写水平及教学模式满意度方面的应用效果。结果:通过多模态AISP系统训练后,学生问诊总分由(163.31±11.57)分提升至(190.21±6.61)分(P<0.001),病历书写总分由(79.25±4.33)分提升至(90.74±2.67)分(P<0.001),学生对教学模式的满意度显著提升(P<0.05)。结论:多模态AISP系统能有效提升学生问诊能力、病历书写水平与教学满意度,为护理教育智能化改革提供可行范式,具有良好的应用前景。

关键词: 人工智能;标准化病人;多模态;护理实习生;教学应用

Abstract: Objective: To construct a multi-modal Artificial Intelligence Standardized Patient (AISP) system for nursing education and to inform the intelligent transformation of nursing pedagogy. Methods: A multi-modal AISP system was developed based on the Nursing Process Theory and Constructivist Learning Theory, integrating natural language processing, speech recognition, and visual generation technologies. A total of 118 nursing undergraduate interns at a tertiary grade A hospital in Guangxi were selected as the research subjects to evaluate the system's effectiveness in enhancing clinical interviewing skills, medical record writing proficiency, and learning satisfaction. Results: Following AISP-based training, students' total clinical interviewing score significantly increased from 163.31±11.57 to 190.21±6.61 (P<0.001). Their medical record writing score also showed marked improvement, rising from 79.25±4.33 to 90.74±2.67 (P<0.001). Furthermore, student satisfaction significantly increased across all evaluated domains (P<0.05). Conclusion: The developed multi-modal AISP system effectively improves nursing students' core clinical competencies and learning satisfaction. It presents a feasible and promising paradigm for driving intelligent innovation in nursing education.

Key words: Artificial Intelligence; standardized patient; multi-modal; nursing interns; teaching application

中图分类号:  R47;R197