主管:国家卫生健康委员会
主办:国家卫生健康委医院管理研究所
中国科技核心期刊(中国科技论文统计源期刊)
中国科学引文数据库(CSCD)核心库期刊
《中文核心期刊要目总览》核心期刊

中国护理管理 ›› 2022, Vol. 22 ›› Issue (12): 1787-1792.doi: 10.3969/j.issn.1672-1756.2022.12.007

• 论著 • 上一篇    下一篇

基于BP神经网络的开颅术后患者病情恶化风险预测模型构建及验证

许来雨 彭伶丽 徐慧兰 唐云红 周芳意 曹浪平   

  1. 中南大学湘雅医院临床护理学教研室,410008 长沙市(许来雨,彭伶丽,周芳意);神经外科(唐云红,曹浪平);中南大学湘雅公共卫生学院(徐慧兰);国家老年疾病临床医学研究中心(湘雅医院)(彭伶丽)
  • 出版日期:2022-12-15 发布日期:2022-12-15
  • 通讯作者: 彭伶丽,博士,主任护师,护士长,E-mail:pll98124@126.com
  • 作者简介:许来雨,硕士在读
  • 基金资助:
    湖南省自然科学基金项目(2021JJ31042);湖南省卫生健康委科研计划项目(202114052096)

The development and validation of BP neural network-based risk prediction model for deterioration in patients after craniotomy

XU Laiyu, PENG Lingli, XU Huilan, TANG Yunhong, ZHOU Fangyi, CAO Langping   

  1. Teaching and Research Section of Clinical Nursing, Xiangya hospital of Central South University, Changsha, 410008, China
  • Online:2022-12-15 Published:2022-12-15
  • Contact: E-mail:pll98124@126.com

摘要: 目的:分析开颅术后患者发生病情恶化的预测变量,并构建开颅术后患者病情恶化风险预测模型。方法:选取湖南省3家三级甲等综合医院2018年1月至2020年3月的开颅手术患者1?576例为研究对象,将样本按照7∶3的比例随机分为建模组(n=1?106)和验证组(n=470),采用BP神经网络构建预测模型,并检验模型的预测效果。结果:BP神经网络变量重要性评分中,术后24?h内CT示颅内血肿、SpO2等指标对模型分类的贡献度较高。预测模型的灵敏度为77.1%,特异度为91.7%,正确率为86.8%,阳性预测值为82.3%,阴性预测值为88.9%。结论:基于BP神经网络构建的预测模型具有良好的预测效能,为临床医护人员预测开颅术后患者病情恶化风险提供了科学、客观的参考依据。

关键词: 开颅术; 病情恶化; 风险预测; 神经外科; BP神经网络

Abstract: Objective: To explore the predictors of deterioration in patients after craniotomy and to construct a risk prediction model. Methods: A total of 1,576 eligible patients were selected at three tertiary grade A hospitals in Hunan province from January 2018 to March 2020. The research samples were randomly divided into the training set (n=1,106) and the verification set (n=470) according to the ratio of 7:3, and the BP neural network was used to construct the prediction model. The predictive effect of the model was verified. Results: In the BP neural network variable importance score, intracranial hematoma on CT within 24 h after craniotomy and SpO2 contributed more to the model classification. The sensitivity of the prediction model was 77.1%, the specificity was 91.7%, the accuracy was 86.8%, the positive predictive value was 82.3%, and the negative predictive value was 88.9%. Conclusion: The prediction model based on the BP neural network algorithm has good predictive effects, which might provide a scientific and objective reference for clinical staff to predict the risk of patients' deterioration after craniotomy.

Key words: craniotomy; deterioration; risk prediction; neurosurgery; BP neural network

中图分类号:  R47;R197