主管:国家卫生健康委员会
主办:国家卫生健康委医院管理研究所
中国科技核心期刊(中国科技论文统计源期刊)
中国科学引文数据库(CSCD)核心库期刊
《中文核心期刊要目总览》核心期刊

中国护理管理 ›› 2021, Vol. 21 ›› Issue (12): 1856-1860.doi: 10.3969/j.issn.1672-1756.2021.12.021

• 信息管理 • 上一篇    下一篇

基于BP神经网络的ICU后综合征预测模型构建研究

王颖 江智霞 胥露 常永虎 傅小云 罗旭 何曼曼 何敏 陈芳 付豹 胡汝均 张霞   

  1. 重庆医科大学附属第一医院护理部,400042 重庆市(王颖);贵州护理职业技术学院(江智霞);遵义医科大学护理学院(胥露,何曼曼,何敏,张霞); 医学信息学院(常永虎,罗旭);遵义医科大学附属医院重症医学一病区(傅小云,陈芳,付豹);急诊科(胡汝均)
  • 出版日期:2021-12-15 发布日期:2021-12-15
  • 通讯作者: 江智霞,主任护师,硕士生导师,E-mail:jzxhl@126.com
  • 作者简介:王颖,硕士
  • 基金资助:
    《中国护理管理》杂志社2020年“护理管理科研基金项目”(CNM-2020-12)

Construction of prediction model of BP neural network-based Post-Intensive Care Syndrome

WANG Ying, JIANG Zhixia, XU Lu, CHANG Yonghu, FU Xiaoyun, LUO Xu, HE Manman, HE Min, CHEN Fang, FU Bao, HU Rujun, ZHANG Xia   

  1. Nursing Department, Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
  • Online:2021-12-15 Published:2021-12-15
  • Contact: E-mail:jzxhl@126.com

摘要: 目的:构建基于反向传播(BP)神经网络的ICU后综合征预测模型。方法:于2019年8月至2020年7月选取贵州省某三级甲等医院709名综合ICU转出患者为研究对象,以患者的一般情况、临床病历及ICU后综合征评估结果为研究资料构建预测模型。随机抽取其中80%样本作为训练集,剩余20%样本作为测试集,利用BP算法构建预测模型。结果:模型的分类准确率达到88%,预期输出值与期望输出值显示出良好的重合度、模型整体精准度较高且拟合效果好。结论:基于BP神经网络的预测模型能较好地预测ICU后综合征的发生。

关键词: ICU后综合征;BP神经网络;影响因素;预测模型

Abstract: Objective: To construct the prediction model of Back Propagation (BP) neural network-based Post-Intensive Care Syndrome (PICS). Methods: A total of 709 patients transferred from a comprehensive ICU in a tertiary grade A hospital in Guizhou province were investigated from August 2019 to July 2020. The prediction model was constructed based on general characteristics, clinical history data and the evaluation of PICS, 80% of the participants were randomly selected as the training set, the remaining 20% participants were used as the test set, and BP algorithm was used to construct prediction model. Results: The classification accuracy of the model reached 88%, the predicted output and the expected output showed a good degree of coincidence, the overall accuracy of the model was high and the fitting effect was satisfied. Conclusion: The BP neural network-based prediction model can be used to predict the occurrence of PICS.

Key words: Post-Intensive Care syndrome; BP neural network; influencing factors; prediction model

中图分类号: 

  • R47