主管:国家卫生健康委员会
主办:国家卫生健康委医院管理研究所
中国科技核心期刊(中国科技论文统计源期刊)
中国科学引文数据库(CSCD)核心库期刊
《中文核心期刊要目总览》核心期刊

中国护理管理 ›› 2023, Vol. 23 ›› Issue (7): 999-1003.doi: 10.3969/j.issn.1672-1756.2023.07.010

• 论著 • 上一篇    下一篇

创伤性脑损伤患者医院获得性肺炎风险预测模型的构建

向黔灵 张加碧 江智霞 胡汝均 张芳 鲁鑫 胥露   

  1. 贵州茅台医院护理部,564500 贵州省仁怀市(向黔灵,张加碧);贵州护理职业技术学院院办公室(江智霞,张芳);遵义医科大学附属医院护理部(胡汝均,鲁鑫,胥露)
  • 出版日期:2023-07-15 发布日期:2023-07-15
  • 通讯作者: 张加碧,本科,副主任护师,护理部主任,E-mail:32715515@qq.com
  • 作者简介:向黔灵,硕士,主管护师
  • 基金资助:
    贵州省教育厅青年科技人才成长项目基金(黔教合KY字〔2021〕213)

Construction of risk prediction model of Hospital-Acquired Pneumonia in patients with Traumatic Brain Injury based on machine learning algorithm

XIANG Qianling, ZHANG Jiabi, JIANG Zhixia, HU Rujun, ZHANG Fang, LU Xin, XU Lu   

  1. Nursing Department, Kweichow Moutai Hospital, Renhuai, Guizhou province, 564500, China
  • Online:2023-07-15 Published:2023-07-15
  • Contact: E-mail:32715515@qq.com

摘要: 目的:分析创伤性脑损伤患者发生医院获得性肺炎的危险因素,并基于机器学习算法构建风险预测模型,探讨模型的预测价值,以识别风险患者。方法:回顾性分析2019年1月1日至2021年7月31日在贵州省某三级甲等医院住院治疗的596例创伤性脑损伤患者的临床资料,建立风险预测指标集,运用5种机器学习算法:逻辑回归、朴素贝叶斯、支持向量机、K-最近邻算法、多层感知器构建风险预测模型,使用准确率、召回率、F1值、AUC值评价模型的预测价值,选择最优预测模型。结果:共纳入596例创伤性脑损伤患者,医院获得性肺炎发生率为34.90%。基于筛选的变量指标构建了5种模型,其中多层感知器模型的准确率、召回率、F1值、AUC均较高。结论:构建的5种风险预测模型中,多层感知器风险预测模型效果较佳,适合用于创伤性脑损伤患者医院获得性肺炎早期预测,可为患者疾病的诊断、治疗和预防策略提供参考。

关键词: 创伤性脑损伤;医院获得性肺炎;影响因素;机器学习;预测模型

Abstract: Objective: To analyze the risk factors of Hospital-Acquired Pneumonia in patients with Traumatic Brain Injury, and to construct a risk prediction model. Methods: The clinical data of 596 patients with Traumatic Brain Injury hospitalized in a tertiary grade A hospital in Guizhou province from January 1st, 2019 to July 31st, 2021 were analyzed retrospectively. Five machine learning algorithms were used to construct risk prediction models, including Logistics Regression, Naive Bayes, Support Vector Machine, Kashin Nearest Neighborg and Multi-layer Representation. The accuracy, recall, F1 value, AUC value were performed to evaluate and compare the model. Results: The incidence of Hospital-Acquired Pneumonia was 34.90%. Among the five models, Multi-layer Representation model had higher accuracy, recall, F1 value and AUC value. Conclusion: Multi-layer Representation model is effective and suitable for the early prediction of Hospital-Acquired Pneumonia in patients with Traumatic Brain Injury. It is expected to provide reference for diagnosis, treatment and prevention strategies for patients with Traumatic Brain Injury.

Key words: Traumatic Brain Injury; Hospital-Acquired Pneumonia; influencing factor; machine learning; predictive model

中图分类号:  R47;R197